Least Squares Method Used in Reduction of Data From Theodolite Measurements on Fast Moving Glaciers
نویسندگان
چکیده
منابع مشابه
Fast least-squares polynomial approximation in moving time windows
Only a few time series methods are applicable to signal trend analysis under real-time conditions. The use of orthogonal polynomials for least-squares approximations on discrete data turned out to be very e cient for providing estimators in the time domain. A polynomial extrapolation considering signal trends in a certain time window is obtainable even for high sampling rates. The presented met...
متن کاملStable Moving Least-Squares
It is a common procedure for scattered data approximation to use local polynomial fitting in the least-squares sense. An important instance is the Moving Least-Squares where the corresponding weights of the data site vary smoothly, resulting in a smooth approximation. In this paper we build upon the techniques presented by Wendland and present a somewhat simpler error analysis of the MLS approx...
متن کاملMoving Least Squares Coordinates
We propose a new family of barycentric coordinates that have closed-forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree m polynomials are specified along the boundary of the polygon....
متن کاملMoving Least Squares Approximation
An alternative to radial basis function interpolation and approximation is the so-called moving least squares method. As we will see below, in this method the approximation Pf to f is obtained by solving many (small) linear systems, instead of via solution of a single – but large – linear system as we did in the previous chapters. To make a connection with the previous chapters we start with th...
متن کاملMoving Least Squares Approximation on the Sphere
We introduce moving least squares approximation as an approximation scheme on the sphere. We prove error estimates and approximation orders. Finally, we show certain numerical results. x1. Introduction Recently, approximation on the sphere has become important because of its obvious applications to Meteorology, Oceanography and Geoscience and Geo-engineering in general. Over the last years seve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Glaciology
سال: 1986
ISSN: 0260-3055,1727-5644
DOI: 10.1017/s0260305500001117